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Abstract

This paper develops a theoretical framework to investigate the core dependence of
peak flows on the geomorphic properties of river basins. Based on the theory of
transport by travel times, and simple hydrodynamic characterization of floods, this
new framework invokes the linearity and invariance of the hydrologic response to pro-5

vide analytical and semi-analitical expressions for peak flow, time to peak, and area
contributing to the peak runoff. These results are obtained for the case of constant-
intensity hyetograph using the Intensity-Duration-Frequency (IDF) curves to estimate
extreme flow values as a function of the rainfall return period. Results show that, with
constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and10

usually shorter than the basin concentration time. Moreover, the critical storm duration
is shown to be independent of rainfall return period. Further, it is shown that the basin
area contributing to the peak discharge does not depend on the channel velocity, but
is a geomorphic propriety of the basin. The same results are found when the effects of
hydrodynamic dispersion are accounted for. As an example this framework is applied15

to three watersheds. In particular, the runoff peak, the critical rainfall durations and the
time to peak are calculated for all links within a network to assess how they increase
with basin area.

1 Introduction

A number of hydrological analyses require the evaluation of the highest peak-flow val-20

ues expected to occur with a given return period. Most of the methods addressing this
issue – from the simple rational method Mulvaney (1851), Doodge (1957) to the use
of distributed rainfall-runoff models (e.g., Beven, 2001) – have been developed with
the purpose of providing quantitative predictions of peak flows for engineering applica-
tions more than a synthesis of their dependence on the geomorphic and hydrodynamic25

characteristics of the watershed. To this end, this paper develops a simplified theory
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based on the concepts of geomorphologic instantaneous unit hydrograph (GIUH) and
of width function (Rinaldo et al., 1991, 1995; D’Odorico and Rigon, 2003). This theory
extends the results of Henderson (1963) and Myninink and Corder (1976) and com-
plements some findings by Robinson and Sivapalan (1997). The goals of the paper
include: understanding the geomorphic structure of the highest peak-flow caused by5

rainfall with given return period; redefining the concept of concentration time within the
framework of the GIUH theory; determining the duration of the rainfall able to generate
the maximum peak flow under the assigned climatic conditions; determining the time
to peak as a function of rainfall and basin characteristics.

1.1 Basic concepts and results10

The concept of Unit Hydrograph (Sherman, 1932) is used in the representation of the
hydrograph as a sum of the responses to different rainfall inputs observed throughout
an individual rainstorm

Q(t) = AT

∫ t
0
f (t − τ) p(τ) dτ (1)

with AT being the total contributing area, t the time, τ the time counted starting at the15

beginning of the rainstorm, p the intensity of effective precipitation at time τ, and f (t)
the instantaneous unit hydrograph (IUH). The IUH represents the travel time probabil-
ity density function of a unit amount of water instantaneously injected into the basin
(Gupta and Mesa, 1988); f (t) can be determined either through some simple con-
ceptual frameworks (Nash, 1957) or through the geomorphological theory (Rodriguez-20

Iturbe and Valdes, 1979; Gupta et al., 1980). Depending on the physical hypotheses
underlying the different formulations of the IUH, f (t) can be defined either within an
infinite or a finite time domain. In the latter case f (t)=0 for t ≥ τc, where τc is the con-
centration time of the rational method (i.e. the time at which the whole basin contributes
to the discharge at the outlet). The integral:25
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S(t) =
∫ t
0
f (τ) dτ (2)

is known in literature as S-hydrograph (e.g., Doodge, 2003, p. 86) and represents the
cumulative probability distribution of travel times inside the basin (S(t)= 1 for t ≥ τc),
i.e. S(t) is the ratio between contributing area at time t and basin area. In this simplified
approach the rate of (effective) precipitation is assumed to be constant throughout5

individual rainstorms of duration tp:

p(t, tp) ≡ p H(tp − t) H(t), (3)

where H() is the Heaviside step function (i.e. H(t) = 1 for t ≥ 0 and H = 0 other-
wise). By definition, p can be considered the expected value of the effective intensity
of rainfall during the storm. In what follows we will refer to the expected value of p10

as a first-order approximation of the “real” storm hyetograph. This approach will al-
low us to obtain semi-analytical results that could be easily generalized to the case of
hyetographs with non-constant intensity as suggested by D’Odorico and al. (2005) for
the case of landslide-triggering precipitation. The time-to-peak, t∗, can be found either
for t = tp, or by solving the following equation, first derived by Henderson (1963) and15

hereafter called Henderson’s equation (see also Appendix A):

f (t) = f
(
t − tp

)
tp < τc. (4)

The graphic solution of Eq. (4) is illustrated in Fig. 1. For t > τc, S(t) is a constant
(hence, f (t)=dS(t)/dt=0), while S(t−tp) is an increasing function of t (i.e. f (t−tp)>
0). Therefore the solution, t∗, of Eq. (4) needs to be searched in the interval [tp, τc].20

Figure 1, shows the existence of a delay, (∆t = t∗− tp), between the end of the rain-
storm and the occurrence of the flow peak. This delay depends on the characteristics
of the IUH and its parameters. The delay, ∆t, corresponding to the main (i.e. highest)
peak can be easily determined: Fig. 2 shows how ∆t is a decreasing function of tp
and becomes null as tp approaches τc. Henderson (1963) and Robinson and Siva-25

palan (1997) solved Eq. (4) using a triangular hydrograph. However it can be solved
1034
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analytically (Appendix B) in the case of Nash hydrograph (Nash, 1957) and with simple
numerical code in the general case, as explained in the following section. If t∗ is the
time to peak – counted from the beginning of the rainfall – the peak flow, Qp, is then
estimated as Q(t∗) using Eq. (A5) for the case of hyetographs with constant intensity:

Qp =
{
p AT

(
S
(
t∗
)
− S
(
t∗ − tp

))
= p A∗ 0 ≤ tp ≤ τc

p AT S (τc) = p AT tp > τc
(5)5

with t∗ being a function of tp (through Eq. 4) and S(t∗) the fraction of contributing area
at t= t∗. If the duration is smaller than the concentration time, the contributing area at
t= t∗ is A∗ =AT [S(t∗)−S(t∗−tp)].

1.2 Extreme values of peak flows

The maximum peak flow occurring after a rainstorm with a certain return period, tr,10

(hereafter referred to as extreme peak flow) can be determined by expressing p in
Eq. (5) as a function of duration, tp, and return period, tr. These curves provide a
statistical representation of the most severe rainfall conditions for a certain geographic
location and return period. Thus, the extreme peak-flow discharge, Qp (Eq. 5), depends
on tp also through p. Because for any given return period, p=p(tp|tr) is a decreasing15

function of tp and S(t∗)=S(tp+∆t) is an increasing function of its argument, there is
a particular duration, t∗p, which maximises the peak-flow discharge. Such a duration
needs to be shorter than the concentration time, τc. This critical duration can be found
by solving the equation dQp/dtp = dQ(tp+∆t)/dtp = 0, where ∆t =∆t(tp) is a smooth
function of tp. We will indicate with ∆t∗ the value of ∆t(tp) calculated for tp = t∗p. The20

first order-derivative of Eq. (5a) becomes

d Q
(
t∗
)

dtp
= AT

{
p′
(
t∗p|tr
) [

S
(
t∗p + ∆t∗

)
− S (∆t∗)

]
+ p
(
t∗p|tr
) [

f
(
t∗p + ∆t∗

)
(1 + ∆′(t)) − f (∆t∗) ∆′(t)

]}
= 0 (6)
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where p′(t∗p|tr) is the first-order derivative of the p(t∗p|tr) with respect to tp and the first-
order derivative of S(t) has been expressed as the IUH (i.e. S ′(tp +∆t) = f (tp +∆t)).
Substituting Eq. (4) into Eq. (6) we obtain

p′(tp|tr)
p
(
tp|tr
) = −

f
(
tp + ∆t

)
S
(
tp + ∆t

)
− S(∆t)

. (7)

which is equivalent to the main equation in Myninink and Corder (1976), though it5

is here derived for any shape of the IUH. We use intensity-duration-frequency (IDF)
curves to relate rainfall intensity. Scaling models of IDF curves are often based on
power laws

p
(
tp|tr
)
= a(tr) t

−m
p (8)

where a(tr) is a function of the return period tr and 0 ≤ m ≤ 1 is independent of tr.10

Equation (8) in Eq. (7) gives

m =
tp f
(
t∗
)

S (t∗) − S (∆t∗)
≡ g
(
t∗p
)

(9)

where t∗ = t∗p+∆t∗. Because the dependence on tr in Eq. (8) is through a(tr) – which
does not appear in Eq. (9) – Eq. (9) implies that, according to this linear theory of the
hydrologic response, the critical rainfall duration (t∗p) associated with extreme runoff15

peak flow values, is independent of the return period. The same result applies also to
the case of self- similar design storm hyetograph (e.g., Burlando and Rosso, 1996) and
to the design storm hyetograph suggested in Hershfield (1961) and commonly used in
the engineering practice in the US since Bell (1969).

The solution of the system given by Eqs. (9) and (4) can be used to determine20

the critical rainfall duration, t∗p, and the time to peak, t∗. Figure 3 illustrates a typical
dependence of g(tp) on tp (with ∆t(t∗) given by Eq. 4) and provides the graphical
solution (i.e., t∗p) of Eq. (9), for the case with m= 0.63. It can be shown that g(0)= 1
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and g(∞) = 0, consistently with the common observation that values of m span the
interval [0,1] (m ranges most commonly between 0.5 and 1). For some values of m,
it is possible to have multiple solutions of Eq. (9), which correspond to local minima or
maxima of discharge.

Once t∗p is known from Eq. (9), Eq. (5) provides the maximum discharge under a5

rainfall of assigned return period, tr, as

QMAX (tr) = p
(
t∗p|tr
)
C
(
t∗, t∗p

)
AT (10)

where C(t∗, t∗p) ≡ S(t∗)−S(t∗−t∗p). We notice that Eq. (10) is similar to the well known
rational method equation Chow et al. (1988); however, the runoff coefficient, C, de-
pends on the effective fraction of contributing area evaluated as a function time to10

peak, t∗, and on the critical rainfall duration, t∗p (Eq. 6) rather than on the concentration
time. The total contributing area, AT, can be determined as explained in the following
section. We note that in the rational method the coefficient C accounts for effects of
”within-storm” rainfall variability, runoff-generation (i.e., C is a runoff coefficient), and
runoff routing. Our approach explains only the dependence of C on routing processes,15

while the effects of “within-storm” rainfall patterns are not investigated. We also note
that, unlike the rational method, our theory does not assume values of contributing
area and rainfall duration. Rather, both AT and t∗p are the outcome of the interplay of
basin and climatic characteristics, and are calculated as values associated with the
maximum peak flows.20

2 The geomorphological analysis of runoff peaks

The geomorphological theory of the hydrologic response (Rodriguez-Iturbe and
Valdes, 1979; Gupta et al., 1980; Rinaldo et al., 1991; Rinaldo and and Rodriguez-
Iturbe, 1996) provides an interpretation of the IUH, based on the basin morphology and
simple dynamical assumptions. In this paper we express the Geomorphologic Instan-25

taneous Unit Hydrograph (GIUH) through a generalization of the width function, W (x),
1037
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(e.g., Shreve, 1969; Kirkby, 1986; Gupta and Mesa, 1988; Brutsaert, 2005). W (x) is
the probability distribution of distances, x (measured along the network), between any
point in the basin and the outlet. In recent years a number of studies have recog-
nized the soundness of this approach, strengthened its theoretical bases (Rinaldo et
al., 1991, 1995; Saco and Kumar, 2002a,b; D’Odorico and Rigon, 2003; Botter and Ri-5

naldo, 2003) and shown its applicability and calibration to small and large catchments
(e.g., Naden, 1992; Snell and Sivapalan, 1994; Franchini and OConnell, 1996; Da Ross
and Borga, 1997; Naden et al., 1999; Yang et al., 2002; Brutsaert, 2005).

The basin-scale travel time distribution, f (t), can be expressed as a function of W (x)

f (t) =
∫ L
0

W (x) f (t|x) dx (11)10

where f (t|x) is the travel time distribution in a path of length x, and L is the length of
the longest drainage path.

2.1 The kinematic case

When the effects of hydrodynamic dispersion are negligible, water is subject mainly to
advection (kinematic wave), and the probability distribution of travel times, f (t|x), for15

the rain falling at a distance x (measured along the flow path) from the outlet is

f (t|x) = u δ
(
t − x

u

)
(12)

with u being the flood wave channel celerity and δ() the Dirac delta-function. Hence,
Eq. (12) in Eq. (11) gives:

f (t) = u W (u t). (13)20

In this framework, which generalizes Ross (1921), the concentration time is rigourously
τc =L/u, with L being the longest drainage path. When the IDF curves are expressed
by Eq. (8) and f (t) by Eqs. (13), (4) and (9) become:
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W (u t) = W
(
u
(
t − tp

))
(14)

m =
u tp W

(
u
(
tp + ∆t

))(
S
(
tp + ∆t

)
− S(∆t)

). (15)

Equation (14) provides the lag ∆t= t∗−tp between the end of the storm and the peak-
flow occurrence, while Eq. (15) gives the critical rainfall duration, t∗p. As noted before,
t∗p is independent of tr. When Eqs. (14) and (15) are solved for different values of the5

parameter u, the drainage area contribution to the peak flow, A∗ ≡ AT(S(t∗)−S(t∗−tp)),
does not change. As shown in Fig. 4, f (t) shrinks in width as u increases, but at the
same time it increases in height, maintaining a constant area, A∗ ≡ AT(S(t∗)−S(t∗−tp)).

The maximum peak discharge depends hyperbolically on rainfall durations (and
channel flow velocity):10

QMAX = a(tr)
(
t∗p
)−m

C
(
t∗, t∗p

)
AT = a(tr)

(
t∗p
)−m

A∗. (16)

Equation (13) provides a model of IUH which depends only on the parameter u and on
the basin morphology (i.e. on the shape of the width function). Because A∗ is indepen-
dent of u, both A∗ and QMAX depend only on the form of W (), i.e. on the structure of the
flow paths.15

2.2 The effect of diffusive wave propagation

The analysis presented in the previous section accounts for the mean and most of the
variance of the unit hydrograph (e.g., D’Odorico and Rigon, 2003). However, it does
not include the effects of hydrodynamic dispersion which introduces a smoothing on the
peak flows. In this case flood routing can be expressed by a parabolic differential equa-20

tion which is obtained either as a diffusive-wave approximation of the de Saint-Venant
equations, or through the assumption that water parcels are subject to Wiener dynam-
ics, superimposed to the deterministic advection discussed in the previous sections.
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This assumption leads to the estimation of the travel time distribution as a solution of
the Kolmogorov’s backward Eq. (Mesa and Mifflin, 1986) with suitable boundary con-
ditions. Thus, the probability distribution of travel times is expressed by the Gaussian
inverse function (Rinaldo et al., 1991)

f (t|x) =
x√

4 π D t3
exp

[
−

(x − u t)2

4 D t

]
(17)5

where D is the coefficient of hydrodynamic dispersion; the kinematic case (Eq. 12) is
obtained for D→0.

In this case the hydrograph can be expressed (see Eq. C2 in Appendix C) as

Q(t)

AT p
(
tp, tr

) =

{ ∫L
0 dx W (x) Θ(t|x) if 0 ≤ t ≤ tp∫L

0 dx W (x)
[
Θ(t|x) − Θ

(
t − tp|x

)]
if t > tp,

(18)

where10

Θ(t|x) =
1
2
Erf c

(
x

2
√
t D

− u
2

√
t
D

)
+

1
2

Exp
(u x

D

)
Erf c

(
x

2
√
tD

+
u
2

√
t
D

)
. (19)

Notice that dΘ(t|x)/dt= f (t|x) with f (t|x) given by Eq. (17); therefore, for t ≥ tp, Hen-
derson’s equation can be written as∫ L
0

dx W (x)
[
f (t|x) − f

(
t − tp|x

)]
= 0. (20)

The time t∗ satisfying Eq. (20) is always larger than the precipitation duration as in the15

case discussed in Sect. 2. All the other results developed in the previous section can
be extended to the case D>0, once the function W (u t) in Eqs. (13), (14) and Eq. (14)
is replaced by

ω(t) ≡
∫ L
0

W (x) f (t|x) dx. (21)
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Thus, when Eq. (21) is substituted into Eqs. (14) and (15), the critical rainfall time is
still associated with only one value of x∗, while the area, A∗, depends on D and the
shape of W (x) but not on u. The peak discharge can be obtained by substituting the
time to peak, t∗, into Eq. (18). Interestingly, the concept of concentration time, used in
the non-diffusive (kinematic) framework, would be meaningless in this case because5

the domain of ω(t) is infinite. However, it can be here re-introduced as a stochastic
variable, τ̂c with distribution given by Eq. (17) when x = L. In fact, in the case D 6=0,
after a time τc =L/u has elapsed from the beginning of the rainstorm, the furthermost
portions of the basin may still contribute to the hydrologic response with probability
smaller than 1.10

3 Case study

An application of the theory developed in this paper, was carried out for the cases of the
Longo watershed, a small alpine catchment (A=10.3 km2) within the Avisio basin (A=
469 km2) at Predazzo (Italy) and of the Salt River in California (USA) (A=2020 km2).

In this application the width function was calculated accounting for the dependence15

on the difference in the velocities in channels in hillslopes. Different moisture condi-
tions (Rinaldo et al., 1995; D’Odorico and Rigon, 2003) can be expressed through the
quantiles, q, of a wetness index distribution (Beven and Kirkby, 1979; Barling et al.,
1994), which defines the parts of the basins contributing to the hydrograph as satura-
tion overland flow (e.g., Sivapalan and al., 1987; Beven and Wood, 1993; Woods and20

Sivapalan, 1997, 1999). Thus, the total contributing area, AT, is a function of the de-
gree of saturation of the watershed, AT =q Ab, where Ab is the basin area; the width
function is calculated using only the saturated part of the basins (an not the whole
basin area) and depends on the channel velocity, u, and the saturated fraction, q, of
the basin, while the area contributing to the peak flow, A∗, depends on q but not on u,25

as shown in the previous sections.
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It is observed that τc, does not grow linearly with increasing values of q, starting
from a minimum value (i.e. the main stream length divided by u). In all these cases
the variation of τc remains limited by the hillslope extent, and becomes negligible in
the larger basin. Table 1 reports the values of the variables τc, t∗, t∗p, A∗ and Q∗ in the
Longo basin for different values of saturated fraction of the basin. It is observed that t∗5

is usually less than half τc. This difference is due to the long tails of the width function.
The contributing area is about eighty per cent of the total saturated area, AT, and this
fraction remains almost constant with varying q, i.e. a first rough estimation gives:

A∗ ∼ 0.8 AT ∼ 0.8 q Ab (22)

Excluding the lowest saturation conditions, the critical rainfall duration increases almost10

linearly with q >20%, while the delay ∆t∗ of the maximum peak increases non-linearly.
Because of its simplicity, the flow peak analysis can be easily extended to estimate

the runoff peak in all the channel network links inside a basin, providing a regionaliza-
tion of peak flows. Figure 5a, b and c show an example for the Avisio basin. Figure 5a
shows how the maximum discharge QMAX (with rainfall return period, tr =100 years) at15

any link increases with the contributing area A, as:

QMAX(A) ≈ 0.906 A0.984 (23)

where the discharge is in m3/s and the contributing area in km2. In this case, the
parameters (q=30%, uc =2 m/s, r = 100) were derived from calibration on a few high-
flow events measured in some sub-catchments of the Avisio. The heterogeneity of the20

responses shown in Fig. 5 for the small contributing areas is completely due to the
different pathway lengths and their subdivision between hillslopes and channels. The
maximum discharge at any link is due to rainfall of different duration as shown in Figure
5b. The critical duration is only weakly dependent on (i.e., increasing with) the area.
For smaller contributing areas the critical rainfall duration is even more affected by the25

variability of the hillslope length. Even though data were not available to confirm the
variability of t∗p in the smaller basins, these results are consistent with those of Wood
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and al. (1990). Figure 5c shows the delay, ∆t, of the time to peak with respect to
rainfall duration as a function of the contributing areas. It is found that ∆t increases
non-linearly with the contributing area. The flow peak is delayed with respect to the
end of the rainstorm and this delay is larger in the larger subbasins.

The effect of the hydrodynamic dispersion is presented in Fig. 6a, which shows t∗5

as a function of tp in a mid-size basin (Salt River – CA, 2020 km2). Notice how t∗

is always larger than tp when tp < τc (in this basin τc = L/u= 11.2 h), as opposed to
the classic assumptions of the rational method that t∗ = tp when tp <τc. Because from
Eq. (5) Qp/(p AT)=A∗/A, Fig. 6b shows the portion of the watershed contributing to the
basin response at the peak flow. It is observed that, with low values of the dispersion10

coefficient, the response is similar to the kinematic case and the contributing saturated
source area is almost AT (i.e. A∗ ≈ AT) when tp ≈ τc = 11.2 h. With relatively large
values of D (hence of the variance of travel times), A∗/AT remains smaller than 1 in
a broader interval of values of tp. The adimensional parameter Qp/(p AT) is called in
literature “the peakdeness” of the hydrograph (Myninink and Corder, 1976) and was15

found to vary in real cases between 0.5 and 1.5. Values larger than 1 must then be
due to the variability of the rainfall and not to the basin geomorphology.

4 Conclusions

The paper has developed a method for the evaluation of extreme peak-flows based
on the theory of the instantaneous unit hydrograph and on the assumption that storm20

hyetographs have constant rainfall intensity. The system of two Eqs. (14) and (15)
gives the maximum allowable discharge, QMAX , produced by a precipitation event with
a certain return period, tr, time to peak, t∗ = tp +∆t(tp) and constant intensity. When
the intensity-duration dependence of extreme precipitation is expressed by a power
law, t∗p and ∆t do not depend on the return period. Analytical expressions of ∆t where25

obtained in particular for the linear reservoir and for the Nash models (in Appendix B).
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These methods were also applied to the geomorphological IUH using the framework
of the width function. It was found that the area, A∗, contributing to extreme peak
flows, QMAX, does not depend on channel celerity but on the saturated fraction of the
basin, q, the ratio between channel and hillslope velocities, uc/uh, and the dispersion
coefficient, D. Thus, the extreme peakflow, QMAX, is expressed through a framework5

that generalises and clarifies the traditional expression of the rational method.
It was also shown that the peak discharge due to surface runoff increases almost

linearly with the contributing area. Moreover, both the critical rainfall duration, t∗p, asso-
ciated with maximum peakflow values, and the delay between t∗p and the time-to-peak
are increasing functions of the contributing area. The applicability of this framework is10

partly shown through a few basins with different sizes and morphologies. The semi-
analytical character of the simplified theory allows for a fast estimation of the maximum
discharge flowing in any link of the river network.

Appendix A

When t < tp and the rainfall is given by Eq. (3) the rate of flow is:15

Q(t) = AT p
∫ t
0
f (t − τ) dτ = −AT p

∫ 0

t
f(t1) dt1 = p AT S(t) (A1)

where the change of variable in the integral is straightforward and A(t) ≡ ATS(t) is
the watershed area contributing to the flood discharge at time t as follows from the
definition of width function. For t > tp we have instead:

Q(t) = AT p
∫ tp
0

f (t − τ) d τ (A2)20

After the change of variable t1 = t−τ we obtain:

Q(t) = −AT p
∫ t−tp
t

f (t1) dt1 = AT p
[∫ t

0
f (t1) dt1 −

∫ t−tp
0

f (t1) dt1

]
(A3)
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from which, we finally have:

Q(t) = p AT
[
S(t) − S

(
t − tp

)]
. (A4)

Q(t) is a continuos function of t at t= tp.
Thus, the basin response Eq. (1) can be expressed as

Q(t) =
{
p AT S(t)

(
0 ≤ t ≤ tp

)
p AT

(
S(t) − S

(
t − tp

)) (
t > tp

)
,

(A5)5

where S(t) is the the S-hydrograph (Doodge, 2003). Notice that S(t) is a continuos
function of time and Q(t) has a possible discontinuous derivative at t = tp. The maxi-
mum discharge is obtained at the time to peak, t∗, which is found either for t= tp or by
solving the equation dQ/dt=0 (Henderson, 1963):

dS(t)
dt

= f (t) = 0 0 ≤ t ≤ tp10

dS(t)
dt

=
dS
(
t − tp

)
dt

t > tp. (A6)

By definition in Eq. (A6a) f (t) is null for t∗ =0 – which represents a trivial and unphysical
solution – or for t∗ = τc =L/uc.

Thus, if tp > τc the time to peak coincides with the concentration time, otherwise
(i.e. for tp ≤ τc) the solution is found by solving Eq. (A6b), which is equivalent to15

Eq. (4).

Appendix B

An interesting application of Henderson’s equation is found for the case of the Nash
IUH (Nash, 1957):

f (t) =
1
n!

(
t
k

)n−1

e−t/k (B1)20
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where n and k are two calibration parameters. For n= 1 the hydrograph is a negative
exponential (linear reservoir) and the peak is at tp (i.e. t∗ = tp). For n ≥ 2, Eq. (4)
becomes(

1 −
tp
t

)n−1

= e−tp/k (B2)

which is solved as:5

t∗ =
tp

1 −
(
exp
(
−tp/k

))1/(n−1)
. (B3)

It is easy to observe that t∗ is always greater than tp and that t∗ is an increasing function
of the parameter n.

The resulting critical rainfall time is determined (Eq. 9) by solving:

m =
tp
(
t∗(n−1)

)
et∗/k

Γ
(
n,
(
t∗ − tp

)
/k
)
− Γ(n, t∗/k)

(B4)10

where Γ is the incomplete gamma function:

Γ(a,x) =
∫ ∞
0

ta−1 e−t dt. (B5)

As noted, the linear-reservoir model (n= 1 case), is a particular case of Eq. (B2). In
this case, ∆t=0 for any tp. In this case Eq. (9) becomes

m =

(
tp/k

)
e−tp/k

1 − e−tp/k
. (B6)15
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Appendix C

The hydrograph response is expressed by Eq. (1) with p given by Eq. (3) and f (t−τ)
by Eq. (11):

Q(t) = AT p
(
tp, tr

) ∫ t
0
H
(
tp − τ

)
×
∫ L
0

W (x) f (t − τ|x) dx d τ. (C1)

When f (t−τ|x) is expressed by Eq. (17), the change of variable t−τ→t′ leads to5

Q(t)

p
(
tp, tr

)
AT

=

{∫L
0dx W (x)

∫t
0 f (t′|x) dt′ 0 ≤ t ≤ tp∫L

0dx W (x)
∫t
t−tp

f (t′|x) dt′ t > tp
(C2)

where

Θ(t) =
∫ t
0
f (t′|x) dt′ = L−1

[
f̂ (s|x)

s

]
t′=t

. (C3)

In Eq. (C3) L−1[] represents the inverse Laplace-transform, while f̂ (s|x) is the Laplace
transform of Eq. (17)10

f̂ (s|x) = Exp

[
x
u −

√
u2 + 4 s D
2 D

]
. (C4)

Equation (C4) in Eq. (C3) gives

Θ(t) = Exp
(u x

2 D

)
L−1

Exp
(
−a
√
s + b2

)
s

 (C5)

where a = x/
√
D and b = u/2

√
D. The inversion of the Laplace transform leads to

Eq. (19).15
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Table 1. Relevant quantities calculated for the rescaled width functions of the Longo catchment
(r =10): q is the fraction of saturated areas; t∗p is the duration of the rainfall which gives the
largest peak discharge; t∗ the time to peak; τc the concentration time; A∗ the area contributing
to the peak; Q∗ is the largest discharge; AT the total saturated area.

q t∗p (s) t∗ (s) τc (s) A∗ (km2) Q∗ (m3 s−1) AT (km2)

0.05 4624 5075 14 631 0.418 6.25 0.529
0.13 5834 6808 15 721 1.086 14 1.373
0.28 6063 7632 16 287 2.288 28.85 2.931
0.55 6407 8325 16 570 4.497 54.8 5.668
0.82 6763 8884 17 496 6.799 80.07 8.472
1 7292 9925 17 496 8.3171 94.012 10.33
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(a)

(b)

(c)

Fig. 1. The solutions of Eq. (4) are given by the crossing of the unit hydrograph f (t) with another
unit hydrograph, f (t−tp), shifted by a distance, tp. The figure shows: (a) the graphical solution
of the equation (in black f (t) and in grey f (t− tp); t∗ is the time to peak. (b) t∗ is usually larger
than tp. This is true for constant intensity uniform hyetograph; (c) the discharge obtained by the
convolution of the IUH in (a) with the rainfall in (b).
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Fig. 2. Delay, ∆t, of time to peak with respect to the end of the rainstorm, as a function of
rainfall duration, tp. In this case the rescaled width function approach (D’Odorico and Rigon,
2003) was used to account for the lower flow velocity in the hillslopes, uh�u. The analysis
refers to the rescaled width function of the Longo watershed (Italy) with r = u/uh = 10 and
q = 1. For values tp ≥ τc, the delay is null. For smaller tp there are multiple peak flows. The
grey points correspond to secondary peak flows and the black points to the largest peak flow.
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Fig. 3. Graphical solution of Eq. (9) for three values of channels celerity vc. The value of
m = 0.63 (horizontal line) is found by analysing the extreme precipitation in the area of the
Longo watershed (Italy); the other curves represent the function g(tp) given by Eq. (9) with
different channel velocities. By increasing the velocity the time to peak decreases and the peak
discharge increases. However the area contributing to the peak flow remains constant in all of
the three cases.
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Fig. 4. Two examples unit hydrographs derived from the width function with u= 2 m/s (with
higher peak on the left) and u= 1 m/s (with smaller peaks on the right). The area contributing
to the maximum discharge, as derived from the Henderson’s equation and Eq. (17), is 80% of
the total contributing area for each of the hydrograph and marked in grey (darker for the case
u=1 and of an intermediate tone for both the cases). In the u=1 m/s case, the rainfall duration
which gives (Q1)MAX =14 m3/s is (t1)∗p =5828 s; is also (t1)∗ =6808 s (the right limit of the grey).

In the case u=2 m/s it is: (Q2)MAX =21.2 m3/s, (t2)∗p =2914 s, (t2)∗ =3404 s.
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*

(a)

*

(b)

*

(c)

Fig. 5. (a) Plot of the peak discharge for all the links within the Avisio basin (Italy) as a function
of contributing area. The parameters (q = 30%, uc = 2 m/s, r = u/uh = 100) were obtained
from calibration on some real event in a few subcatchments and using IDF curves for a return
period tr =100 years. (b) Critical rainfall duration, t∗p, of links ends inside the Avisio basin (Italy).
(c) Delay of the time to peak with respect to the rainfall duration as a function of the contributing
areas. 1057
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(a)

(b)

Fig. 6. (a) Time to peak (t∗) and (b) normalized peak flow values as a function of the rainstorm
duration (tp) in the Salt River (CA). Notice how Qp/(p AT)=A∗/AT does not depend on channel
flow velocity, since Eq. (5) remains valid also in this more general case.
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